Table of Contents
Catalog of methods in AI/vision/robotics
This is a classification of techniques and algorithms, in order to give a broad view of solutions available to deal with classical problems.
Other pages contain some more details about, which can be seen as memos with references to find more information (with the origin paper when possible).
Learning
Supervised learning
Classification
- MLP (Multi Layers Perceptron) - PMC (Perceptron multicouches)
- gradient backpropagation - rétropropagation du gradient
- stochastic
- with inertia
- simulated annealing - recuit simulé
- newton (second order)
- RBFNN (Radial Basis Functions Neural Networks)
- k-means then gradient descent
- incremental addition of neurons then exact method
- SVM (Support Vectors Machine)
- Decision tree - arbre de décision
- ID3 (based on entropy)
- k-nearest neighbors - k plus proches voisins
- Boosting
- Boosting by majority
- AdaBoost (ADAptive BOOSTing)
- Discrete AdaBoost
- Real AdaBoost
- Gentle AdaBoost
- LogitBoost
- Probabilistic AdaBoost
- FloatBoost
- AdaBoost.Reg
- Multiclass AdaBoost.M1
- Multiclass AdaBoost.M2
- Multilabel AdaBoost.MR
- Multilabel AdaBoost.MH
- Multiclass AdaBoost.MO
- Multiclass AdaBoost.OC
- Multiclass AdaBoost.ECC
- GrPloss
- BoostMA
- AdaBoost.M1W
- SAMME (Stagewise Additive Modeling using a Multi-class Exponential loss function)
- GAMBLE (Gentle Adaptive Multiclass Boosting Learning)
- UBoost
- LPBoost (Linear Programming BOOSTing)
- TotalBoost (TOTALly corrective BOOSTing)
- RotBoost
- alphaBoost
- MILBoost (Multiple Instance Learning BOOSting)
- CGBoost (Conjugate Gradient BOOSTing)
- Bootstrap Aggregating
- Cascades of detectors [+]
- Trees of detectors
Regression
- MLP (Multi Layers Perceptron)
- RBFNN (Radial Basis Functions Neural Network)
- SVR (Support Vectors Regressor)
Pattern recognition
- Viola-Jones Detector [+]
- with Extended Set of Haar features
- Stumps or CART trees
- Rotation Invariant
- Multiview
- Parallel Cascades
- Pyramid Cascade
- Tree Cascade
- Vector Boosting
Unsupervised learning
Vector quantization / Clustering
- Sequential leader
- k-means - k-moyennes
- GNG (Growing Neural Gas)
- Auto-organizing maps (Kohonen) - cartes auto-organisatrices de Kohonen
Reinforcement learning
- MDP (Markov Decision Processes)
- Q-learning
- Value iteration
- Policy iteration
Planification
Symbolic
State space search
- A*
- WA*
- IDA*
- Dijkstra
Logics
- GraphPlan
- Stan
- IPP
- SGP
- SATplan (SATisfiability PLANning)
Others
- Genetic algorithms - algorithmes génétiques
- Ant colonies - colonies de fourmis
Specific
Path planning
- Configurations space
- Potential fields
Perception
Vision
Color Quantization
- RGB cone
- YUV polygon
- HSV rectangle
- Lab
Image segmentation
- Floodfill - inondation
- Watershed - lignes de partage des eaux
Filters
Edge detection
- Canny detector
- Canny-Deriche
Pattern recognition
- Mean-Square Regression - Régression aux moindres carrés
- Hough Transforms [+]
- Standard Hough Transform
- Randomized Hough Transform
- Connective Randomized Hough Transform
- Combinatorial Hough Transform
- Adaptive Hough Transform
- Probabilistic Hough Transform
- Adaptive Probabilistic Hough Transform
- Progressive Probabilistic Hough Transform
- Hierarchical Hough Transform
- Sampling Hough Transform
- Generalized Hough Transform
- UpWrite method
- Curvogram
- Shape Descriptors
- Ankerst's Shape histograms
- Chamfer matching
- Contour Likelihood Measurement
Tracking
- Kalman Filter
- Generalized Kalman Filter
- Correlation Tracking
- ACA (Area Correlation Algorithm)
- KLT Tracker (Kanade-Lucas-Tomasi)
- IPAN Tracker
- MeanShift
- Features detection
- Harris detector
- Susan detector
- Multiresolution Contrast detector
Sensors fusion
- Kalman filter
- Particles filter (bayesian network) - filtrage particulaire