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Abstract

We consider boosting algorithms that main-
tain a distribution over a set of examples. At
each iteration a weak hypothesis is received
and the distribution is updated. We moti-
vate these updates as minimizing the relative
entropy subject to linear constraints. For ex-
ample AdaBoost constrains the edge of the
last hypothesis w.r.t. the updated distribu-
tion to be at most γ = 0. In some sense,
AdaBoost is “corrective” w.r.t. the last hy-
pothesis. A cleaner boosting method is to
be “totally corrective”: the edges of all past
hypotheses are constrained to be at most γ,
where γ is suitably adapted.

Using new techniques, we prove the same it-
eration bounds for the totally corrective algo-
rithms as for their corrective versions. More-
over with adaptive γ, the algorithms provably
maximizes the margin. Experimentally, the
totally corrective versions return smaller con-
vex combinations of weak hypotheses than
the corrective ones and are competitive with
LPBoost, a totally corrective boosting algo-
rithm with no regularization, for which there
is no iteration bound known.
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1. Introduction

In this paper we characterize boosting algorithms by
the underlying optimization problems rather than the
approximation algorithms that solve these problems.
The goal is to select a small convex combination of
weak hypotheses that maximize the margin. For lack
of space we only compare the algorithms in terms of
this goal rather than the generalization error and re-
fer to (Schapire et al., 1998) for generalization bounds
that improve with the margin and degrade with the
size of the final convex combination.

One of the most common boosting algorithms is Ada-
Boost (Freund & Schapire, 1997; Schapire & Singer,
1999). It can be viewed as minimizing the relative en-
tropy to the last distribution subject to the constraint
that the edge of the last hypothesis is zero (equiva-
lently its weighted error is half) (Kivinen & Warmuth,
1999; Lafferty, 1999). One of the important properties
of AdaBoost is that it has a decent iteration bound
and approximately maximizes the margin of the ex-
amples (Breiman, 1997; Rätsch et al., 2001; Rudin
et al., 2004a). A similar algorithm called AdaBoost∗ν
provably maximizes the margin and has an analogous
iteration bound (Rätsch & Warmuth, 2005).1 This al-
gorithm enforces only a single constraint at iteration
t: the edge of the hypothesis must be at most γ, where
γ is adapted.

A natural idea is to constrain the edges of all t past
hypotheses to be at most γ and otherwise minimize
the relative entropy to the initial distribution. Such
algorithms were proposed by Kivinen and Warmuth
(1999) and are called “totally corrective”. However, in
that paper only γ = 0 was considered, which leads to

1Other algorithms for maximizing the margin with
weaker iteration bounds are given in (Breiman, 1999;
Rudin et al., 2004a).
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an infeasible optimization problem when the training
data is separable. Building on the work of Rätsch and
Warmuth (2005), we now adapt the edge bound γ of
the totally corrective algorithm so that the margin is
approximately maximized. We call our new algorithm
TotalBoostν .

The corrective AdaBoost∗ν can be used as a heuristic
for implementing TotalBoostν by doing many passes
over all past hypotheses before adding a new one.
However, we can show that this heuristic is often sev-
eral orders of magnitude less efficient than a vanilla
sequential quadratic optimization approach for solving
the optimization problem underlying TotalBoostν .

A parallel progression occurred for on-line learning
algorithms of disjunctions. The original algorithms
(variants of the Winnow algorithm (Littlestone, 1988))
can be seen as processing a single constraint induced
by the last example. However, more recently an on-
line algorithm has been developed for learning disjunc-
tions (in the noise-free case) that enforces the con-
straints induced by all past examples (Long & Wu,
2005). The proof techniques in both settings are es-
sentially the same except that for disjunctions the mar-
gin/threshold is fixed whereas in boosting we optimize
the margin.

Besides emphasizing the new proof methods for iter-
ation bounds of boosting algorithms, this paper also
does an experimental comparison of the algorithms.
We show that while TotalBoostν has the same iter-
ation bound as AdaBoost∗ν , it often requires several
orders of magnitudes fewer iterations. When there
are many similar weak hypotheses, the totally cor-
rective algorithms has an additional advantage: as-
sume we have 100 groups of 100 weak hypotheses each,
where the hypotheses within each group are very sim-
ilar. TotalBoostν picks a small number of hypotheses
from each group, whereas the algorithms that process
one constraint at a time often come back to the same
group and choose many more members from the same
group. Therefore in our experiments the number of
weak hypotheses in the final convex combination (with
non-zero coefficients) is consistently much smaller for
the totally corrective algorithms, making them better
suited for the purpose of feature selection.

Perhaps one of the simplest boosting algorithms is LP-
Boost: it is totally corrective, but unlike TotalBoostν ,
it uses no entropic regularization. Also, the upper
bound γ on the edge is chosen to be as small as pos-
sible in each iteration, whereas in TotalBoostν it is
decreased more moderately. Experimentally, we have
identified cases where TotalBoostν requires consider-
ably fewer iterations than LPBoost, which suggests

that either the entropic regularization or the moder-
ate choice of γ is helpful for more than just for proving
iteration bounds.

2. Preliminaries

Assume we are given N labeled examples
(xn, yn)1≤n≤N , where the examples are from some
domain and the labels yn lie in {±1}. A boosting
algorithm combines many “weak” hypotheses or rules
of thumb for the examples to form a convex combina-
tion of hypotheses with high accuracy. In this paper a
boosting algorithm adheres to the following protocol:
it maintains a distribution dt on the examples; in each
iteration t a weak learner provides a “weak” hypoth-
esis ht and the distribution dt is updated to dt+1.
Intuitively the updated distribution incorporates the
information obtained from ht and gives high weights
to the remaining “hard” examples. After iterating
T steps the algorithm stops and outputs a convex
combination of the T weak hypotheses it received
from the weak learner.

We first discuss how we measure the performance of a
weak hypothesis h w.r.t. the current distribution d. If
h is±1 valued, then the error ε is the total weight on all
the examples that are misclassified. When the range of
a hypothesis h is the entire interval [−1,+1], then the
edge γh(d) =

∑N
n=1 dnynh(xn) is a more convenient

quantity for measuring the quality of h. This edge is
an affine transformation of the error for the case when
h has range ±1: εh(d) = 1

2 −
1
2γh(d). Ideally we want

a hypothesis of edge 1 (error 0). On the other hand it
is often easy to produce hypotheses of edge at least 0
(or equivalently error at most 1

2 ). We define the edge
of a set of hypotheses as the maximum of the edges.

Assumption on the weak learner: Assume that for
any distribution d on the examples the weak learner
returns a hypothesis h with edge γh(d) at least g. As
we will discuss later, the guarantee parameter g might
not be known to the boosting algorithm.

Boosting algorithms produce a convex combination of
weak hypotheses: fα(x) :=

∑T
t=1 αth

t(x), where ht

is the hypothesis added in iteration t and αt is its
coefficient. The margin of a given example (xn, yn) is
defined as ynfα(xn). The margin of a set of examples
is always the minimum over the examples.

Our algorithms always produce a convex combination
of weak learners of margin at least g − ν, where ν
is a precision parameter. Also the size of the convex
combination is at most O( log N

ν2 ). Note that the higher
the guarantee g of the weak learner, the larger the
produced margin.
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Algorithm 1 LPBoost algorithm

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, desired ac-
curacy ν

2. Initialize: d1
n = 1/N for all n = 1 . . . N

3. Do for t = 1, . . .,

(a) Train classifier on {S,dt} and obtain hypothe-
sis ht : x 7→ [−1, 1] and let ut

n = ynht(xn)
(b) Calculate the edge γt of ht: γt = dt · ut,

(c) Set γ̂t = ( min
q=1,...,t

γq)− ν

(d) Compute γ∗t as in (1) and set dt+1 to any dis-
tribution d for which uq ·d ≤ γ∗t , for 1 ≤ q ≤ t

(e) If γ∗t ≥ γ̂t then T = t and break

4. Output: fα(x) =
∑T

t=1 αth
t(x), where the coef-

ficients αt realize margin γ∗T .

How are edges and margins related? By duality the
minimum edge of the examples w.r.t. the hypotheses
set Ht = {h1, . . . , ht} equals the maximum margin:

γ∗t :=min
d

max
h∈Ht

γh(d)=max
α

min
n

ynfα(xn) := ρ∗t , (1)

where d and α are N and t dimensional probability
vectors, respectively. Note that the sequence γ∗t is non-
decreasing. It will approach the guarantee g from be-
low. The algorithms will stop as soon as the edges are
within ν of g (See next section.)

The above duality also restricts the range of the guar-
antee g that a weak learner can possible have. Let
H be the entire (possibly infinite) hypothesis set from
which the weak learner is choosing. If H is compact
(see discussion in Rätsch & Warmuth, 2005) then

γ∗ := min
d

max
h∈H

γh(d) = max
α

min
n

ynfα(xn) := ρ∗,

where d and α are probability distributions over the
examples and H, respectively, and fα(xn) now sums
over H. Clearly g ≤ ρ∗ and for any non-optimal d,α:

max
h∈H

γh(d) > γ∗ = ρ∗ > min
n

ynfα(xn) =: ρ(α). (2)

So even though there always is a weak hypothesis in
H with edge at least ρ∗, the weak learner is only guar-
anteed to produce one of edge at least g ≤ ρ∗.

One of the most bare-bones boosting algorithms is LP-
Boost (Algorithm 1) proposed by Grove and Schuur-
mans (1998); Bennett et al. (2000). It uses linear pro-
gramming to constrain the edges of the past t weak
hypotheses to be at most γ∗t , which is as small as pos-
sible. No iteration bound is known for this algorithm,

Algorithm 2 TotalBoostν with accuracy param. ν

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉 , desired ac-
curacy ν

2. Initialize: d1
n = 1/N for all n = 1 . . . N

3. Do for t = 1, . . .

(a) Train classifier on {S,dt} and obtain hypothe-
sis ht : x 7→ [−1, 1] and let ut

n = ynht(xn)
(b) Calculate the edge γt of ht: γt = dt · ut

(c) Set γ̂t = ( min
q=1,...,t

γq)− ν

(d) Update weights:

dt+1 = argmin
{d∈PN : d·uq≤bγt, for 1≤q≤t}

∆(d,d1)

(e) If above infeasible or dt+1 contains a zero
then T = t and break

4. Output: fα(x) =
∑T

t=1 αth
t(x), where the co-

efficients αt maximize margin over hypotheses set
{h1, . . . , hT }.

Algorithm 3 TotalBoostg
ν with accuracy parameter

ν and edge guarantee g

As TotalBoostν but in step 3(c) we use γ̂t = g − ν.

and also the performance can very much depend on
which LP solver is used (see experimental section).

Our algorithms are motivated by the minimum rela-
tive entropy principle of Jaynes: among the solutions
satisfying some linear constraints choose the one that
minimizes a relative entropy to the initial distribution
d1, where the relative entropy is defined as follows:
∆(d̃,d) =

∑
n d̃n ln edn

dn
. Our default initial distribu-

tion is uniform. However, the analysis works for any
choice of d1 with non-zero components. There are two
totally corrective versions of the algorithm: one that
knows the guarantee g of the weak learner and one that
does not. The one that does (called TotalBoostg

ν ; Al-
gorithm 3), simply constrains the edges of the previous
hypotheses to be at most g−ν, where ν is a given preci-
sion parameter. Our main algorithm, TotalBoostν (Al-
gorithm 2) does not know g. It maintains the estimates
γ̂t =

(
mint

q=1 γq

)
− ν and constrains the edges of the

past hypotheses to be at most γ̂t. The sequence {γ̂t}t
is clearly non-increasing. By our assumption γt ≥ g,
and therefore γ̂t ≥ g − ν.

3. Termination Guarantees

When the algorithms break, we need to guarantee that
the margin w.r.t. the current hypothesis set is at least
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Algorithm 4 AdaBoost∗ν with accuracy parameter ν

As TotalBoostν but minimize the divergence to the
last distribution w.r.t. a single constraint:

dt+1 = argmin
{d:d·ut≤bγt}

∆(d,dt).

Let α̂t be the dual coefficient of the constraint on the
edge of ht used in iteration t. The algorithm breaks if
the margin w.r.t. the current convex combination (i.e.
the normalized α̂t) is at least γ̂t.

Algorithm 5 AdaBoostg
ν with accuracy parameter ν

and guarantee g

As AdaBoost∗ν but in step 3(c) we use γ̂t = g − ν.

g− ν. TotalBoostg
ν is given g and constrains the edges

of all past hypotheses to be at most g − ν. When
these become infeasible, the edge γ∗t w.r.t. the cur-
rent hypotheses set is larger than g−ν. The algorithm
also breaks when the solution dt+1 of the minimiza-
tion problem lies at the boundary of the simplex (i.e.
the distribution has a zero component).2 In this case
γ∗t = g − ν, because if γ∗t < g − ν, then all constraints
would have slack and the solution d that minimizes
the divergence ∆(d,d1) would lie in the interior of the
simplex since d1 does. Thus whenever the algorithm
breaks, we have ρ∗ − ν ≤ γ∗t . TotalBoostg

ν outputs
a convex combination of the hypotheses {h1, . . . , hT }
that maximizes the margin. By duality, the value ρ∗t
of this margin equals the minimum edge γ∗t and there-
fore TotalBoostg

ν is guaranteed to output a combined
hypothesis of margin larger than g − ν.

The second algorithm TotalBoostν does not know the
guarantee g of the weak learner. It breaks if its opti-
mization problem becomes infeasible, which happens
when γ∗t > γ̂t ≥ g − ν. The algorithm also breaks
when the solution dt+1 of the minimization problem
lies at the boundary of the simplex. In this case,
γ∗t = γ̂t by an argument similar to the one used
above. Thus whenever the algorithm breaks, we have
γ∗t ≥ γ̂t ≥ g − ν and therefore TotalBoostν is guaran-
teed to output a hypothesis of margin ρ∗t = γ∗t ≥ g−ν.

The termination condition for LPBoost3 follows a sim-
ilar argument: we directly check for γ∗t ≥ γ̂t. The
algorithm Adaboost∗ν computes the margin using the
normalized dual coefficients α̂t of its constraints and
stops as soon as this margin is at least γ̂t. Finally,
Adaboostg

ν breaks when the same margin is at least
g− ν. For both of these algorithms the current distri-

2This second condition for breaking is only added to
ensure the the dual variables of the optimization problem
of TotalBoostν remain finite.

3We use a different termination condition for LPBoost
than in (Bennett et al., 2000; Grove & Schuurmans, 1998).

bution dt lies in the interior because the dual coeffi-
cients α̃t are finite and dt

n ∼ d1
n exp(−

∑t−1
q=1 α̃qu

q
n).

4. Iteration Bound

In the previous section we showed that when the algo-
rithms break, then the output hypothesis has margin
at least g − ν. We now show that TotalBoostν must
break after T ≤ 2 ln N

ν2 iterations. In each iteration t,
the algorithm updates the distribution that is “closest”
to d1 and lies in a certain convex set and these sets get
smaller as t increases. Here closeness is measured with
the relative entropy which is a special Bregman diver-
gence. This closest point is called a projection of d1

to the convex set (d1 is assumed to lie in the interior
of the simplex). The proof is analogous to an on-line
mistake bound for learning disjunctions (Long & Wu,
2005). It employs the Generalized Pythagorean The-
orem that holds for such projections w.r.t. any Breg-
man divergence (Bregman, 1967, Lemma 1; Herbster
& Warmuth, 2001, Theorem 2).

Theorem 1 TotalBoostν breaks after at most d 2 ln N
ν2 e

iterations.

Proof Let Ct denote the convex set of all points d ∈
RN that satisfy

∑
n dn = 1, dn ≥ 0 (for 1 ≤ n ≤ N),

and edge constraints d · uq ≤ γ̂t, for 1 ≤ q ≤ t, where
uq

n = ynhq(xn). The distribution dt at iteration t− 1
is the projection of d1 onto the closed convex set Ct−1.
Notice that C0 is the entire simplex and because γ̂t can
only decrease and a new constraint is added in trial t,
we have Ct ⊆ Ct−1. If t ≤ T − 1, then our termination
condition assures that at trial t− 1 the set Ct−1 has a
feasible solution in the interior of the simplex. Also d1

lies in the interior and dt+1 ∈ Ct ⊆ Ct−1. These pre-
conditions assure that at trial t−1 the projection dt of
d1 onto Ct−1 exists and the Generalized Pythagorean
Theorem for Bregman divergences can be applied:

∆(dt+1,d1)−∆(dt,d1) ≥ ∆(dt+1,dt). (3)

Since dt ·ut = γt and dt+1 ·ut ≤ γ̂t ≤ γt− ν, dt ·ut−
dt+1 ·ut ≥ ν and because ut ∈ [−1, 1]N , |dt+1−dt|1 ≥
ν. We now apply Pinsker’s inequality:

|dt+1 − dt|1 ≥ ν implies that ∆(dt+1,dt) >
ν2

2
. (4)

By summing (3) over the first T − 1 trials we obtain

∆(dT ,d1)−∆(d1,d1)︸ ︷︷ ︸
0

> (T − 1)
ν2

2
.

Since the left is at most ln N , the bound of the theo-
rem follows.

1004



Totally Corrective Boosting Algorithms that Maximize the Margin

The key requirement for this proof is that the closed
and convex constraint sets Ct used for the projec-
tion at trial t must be non-increasing. It is therefore
easy to see that the iteration bound also holds for the
TotalBoostg

ν algorithm because of our assumption that
γt ≥ g. In the complete paper we prove the same
iteration bound for corrective version AdaBoost∗ν ,
Adaboostg

ν , and the variants of TotalBoost where
argmin(d,d1) is replaced by argmin(d,dt).

5. Experiments

In this section we illustrate the behavior of our new al-
gorithms TotalBoostν and TotalBoostg

ν , and compare
them with LPBoost and AdaBoost∗ν on three different
datasets:

• Dataset 1 is a public dataset from Telik Inc. for
a drug discovery problem called COX-1: 125 bi-
nary labeled examples with a set of 3888 binary
features that are complementation closed.

• Dataset 2 is an artificial dataset used in Rudin
et al. (2004b) for investigating boosting algo-
rithms that maximize the margin: 50 binary la-
beled examples with 100 binary features. For each
original feature we added 99 similar features by
inverting the feature value of one randomly cho-
sen example (with replacement). This results in
a 10,000 dimensional feature set of 100 blocks of
size 100.

• Dataset 3 is a series of artificially generated
datasets of 1000 examples with varying number
of features but roughly constant margin. We
first generated N1 random ±1-valued features
x1, . . . , xN1 and set the label of the examples as
y = sign(x1 + x2 + x3 + x4 + x5). We then du-
plicated each features N2 times, perturbed the
features by Gaussian noise with σ = 0.1, and
clipped the feature values so that they lie in the
interval [-1,1]. We considered N1 = 1, 10, 100 and
N2 = 10, 100, 1000.

The features of our datasets represent the values of the
available weak hypotheses on the examples. In each
iteration of boosting, the “base learner” simply selects
the feature that maximizes the edge w.r.t. the current
distribution d on the examples. This means that the
guarantee g equals the maximum margin ρ∗. Note
that our datasets and the base learner were chosen
to exemplify certain properties of the algorithms and
more extensive experiments are still needed.

We first discuss how the entropy minimization prob-
lems can be solved efficiently. We then compare the al-

gorithms w.r.t. the number of iterations and the num-
ber of selected hypothesis. Finally we show how LP-
Boost is affected by the underlying optimizer and ex-
hibit cases where LPBoost requires considerably more
iterations than TotalBoostν .

5.1. Solving the Entropy Problems

We use a “vanilla” sequential quadratic programming
algorithm (Nocedal & Wright, 2000) for solving our
main optimization problem:

min
d :

P
n dn=1, d≥0, uq·d≤bγt (1≤q≤t)

N∑
n=1

dn log
dn

d1
n

.

We initially set our approximate solution to d̂ = d1

and iteratively optimize d̂. Given the current solution
d̂ satisfies the constraints

∑
n d̂n = 1 and d̂ ≥ 0, we

determine an update δ by solving the following prob-
lem:

min
δ

(
N∑

n=1

(
1 + log

d̂n

d1
n

)
δn +

1

2d̂n

δ2
n

)
,

w.r.t. the constraints d̂ + δ ≥ 0,
∑

n δn = 0, and
uq · (d̂ + δ) ≤ γ̂t (for 1 ≤ q ≤ t). The estimate d̂
is updated to d̂ ← d̂ + δ and we repeat this process
until convergence. The algorithms typically converges
in very few steps.

Note that the above objective is the 2nd order Tay-
lor approximation of the relative entropy ∆(d̂+ δ,d1)
at δ = 0. The resulting optimization problem is
quadratic with a diagonal Hessian and can be effi-
ciently solved by off-the-shelf optimizer packages (e.g.
ILOG CPLEX).

5.2. Number of Iterations

First, we consider the number of iterations needed un-
til each of the algorithms has achieved a margin of at
least ρ∗ − ν. We use dataset 1 and record the mar-
gin of the convex combination of hypotheses produced
by TotalBoostν , LPBoost and AdaBoost∗ν . Addition-
ally, we compute the maximal margin of the current
hypothesis sets in each iteration. See Figure 1 for de-
tails. The default optimizer used for solving LPs and
QPs is ILOG CPLEX’s interior point method.

It should be noted that AdaBoost∗ν needs considerably
less computations per iteration than the totally cor-
rective algorithms. In the case where calling the base
learner is very cheap, AdaBoost∗ν may in some unusual
cases require less computation time than TotalBoostν .
However, in our experiments, the number of itera-
tions required by AdaBoost∗ν to achieve margin at
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Figure 1: TotalBoostν , LPBoost and AdaBoost∗ν on dataset 1 for ν = 0.03, 0.01, 0.003: We show the margin realized
the normalized dual coefficients cαt of TotalBoostν and AdaBoost∗ν (green) and the LP-optimized margin ρ∗t (1) (blue).
Observe that AdaBoost∗ν needs several thousands iterations and the number of iterations of TotalBoostν and LPBoost
are comparable. The margins of TotalBoostν and AdaBoost∗ν start growing slowly, in particular when ν is small. The
margin of TotalBoostg

ν (with guarantee g = ρ∗) increases faster than LPBoost (not shown).

least ρ∗ − ν was ≈ 1/10 times the theoretical up-
per bound 2 log(N)/ν2. TotalBoostν typically requires
much fewer iterations, even though no improved the-
oretical bound is known for this algorithm. In our
experience, the iteration number of TotalBoostν de-
pends only slightly on the precision parameter ν and
when γ̂t is close to ρ∗, then this algorithm converges
very fast to the maximum margin solution (LPBoost
has a similar behavior).

While the algorithms AdaBoost∗ν and TotalBoostν

provably maximize the margin, they both have the
problem of starting too slowly for small ν. If there
is any good upper bound available for the guarantee
g (which here is the optimal margin ρ∗), then we can
initialize γ̂t with this upper bound and speed up the
starting phase. In particular, when ρ∗ is known ex-
actly, then the algorithms AdaBoostg

ν and TotalBoostg
ν

require drastically fewer iterations and the latter con-
sistently beats LPBoost (not shown). In practical sit-
uations it is often easy to obtain a reasonable upper
bound for g.

5.3. Number of Hypotheses

In this subsection, we compare how many hypothe-
ses the algorithms need to achieve a large margin.
Note that LPBoost and TotalBoostν only select a base
hypothesis once: After the first selection, the distri-
bution d is maintained such that the edge for that
hypothesis is smaller than γ̂t and it is not selected
again. AdaBoost∗ν may select the same hypothesis
many times. However, if there are several similar fea-
tures (as in datasets 2 & 3), then this corrective al-
gorithm often selects hypotheses that are similar to
previously selected ones and the number of weak hy-

potheses used in the final convex combination is un-
necessarily large. Hence, TotalBoostν and LPBoost
seem better suited for feature selection, when small
ensembles are needed.

In Figure 2 we display the margin vs. the number of
used and selected hypotheses. The number of selected
hypothesis for LPBoost and TotalBoostν is equal to
the number of iterations. For these algorithms a pre-
viously selected hypothesis can become inactive (cor-
responding α = 0). In this case it is not counted as
a used hypothesis. Note that the number of used hy-
potheses for LPBoost may depend on the choice of the
optimizer (also see discussion below). In the case of
AdaBoost∗ν , all dual coefficients α̂t are non-zero in the
final convex combination. (See caption of Figure 2 for
more details.) We can conclude that the totally cor-
rective algorithms need considerable less hypotheses
when there are many redundant hypotheses/features.
LPBoost and TotalBoostν differ in the initial iterations
(depending on ν), but produce combined hypotheses
of similar size.

In Figure 3 we compare the effect of different choices
of the optimizer for LPBoost. For dataset 2 there is
a surprisingly large difference between interior point
and simplex based methods. The reason is that the
weights computed by the simplex method are often
sparse and the changes in the duplicated features are
sparse as well (by design). Hence, it can easily hap-
pen that the base learner is “blind” on some examples
when selecting the hypotheses. Interior point methods
find a solution in the interior and therefore distribute
the weights among the examples. To illustrate that
this is the right explanation, we modify LPBoost such
that it first computes γ∗t but then it computes the
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Figure 2: TotalBoostν , LPBoost and AdaBoost∗ν on dataset 2 for ν = 0.01: [left & middle] The realized (green) and the
LP-optimized (blue) margin ρ∗t (as in Figure 1) vs. the number of used (active) and selected (active or inactive) hypotheses
in the convex combination. We observe that the totally corrective algorithms use considerable less hypotheses than the
AdaBoost∗ν . If ν � 0.01, then TotalBoostν is again affected by the slow start which leads to a relatively large number
of selected hypotheses in the beginning. [right] The number of selected hypotheses vs. the number of selected blocks of
hypotheses. AdaBoost∗ν often chooses additional hypotheses from previously chosen blocks, while LPBoost typically uses
only one per block and TotalBoostν a few per block. When ν = .1, TotalBoostν behaves more like LPBoost (not shown).

weights using the relative entropy minimization with
γ̂t = γ∗t + ε (where ε = 10−4). We call this the reg-
ularized LPBoost algorithm. We observe in Figure 3
that the regularization considerably improves the con-
vergence speed to ρ∗ of the simplex based solver.

5.4. Redundancy in High Dimensions

We found that LPBoost usually performs very well
and is very competitive to TotalBoostν in terms of
the number of iterations. Additionally, it only needs
to solve linear and not entropy minimization prob-
lems. However, no iteration bound is known for LP-
Boost that is independent of the size of the hypoth-
esis set. We performed a series of experiments with
increasing dimensionality and compared LPBoost’s
and TotalBoostν ’s convergence speed. We found that
in rather high dimensional cases, LPBoost converges
quite slowly when features are redundant (see Figure 4
for an example using dataset 3). In future work, we
will investigate why LPBoost converges more slowly
in this example and construct more extreme datasets
that show this.

6. Conclusion

We view boosting as a relative entropy projection
method and obtain our iteration bounds without
bounding the average training error in terms of the
product of exponential potentials as is customarily
done in the boosting literature (see e.g. Schapire and
Singer (1999)). In the full paper we will relate our
methods to the latter slightly longer proof style.

The proof technique based on Bregman projection

and the Generalized Pythagorean theorem is very ver-
satile. The iteration bound of O( log N

ν2 ) holds for
all boosting algorithms that use constrained mini-
mization of any Bregman divergence ∆̃(., .) over a
domain that contains the probability simplex for
which infd∈Ct ∆̃(d,dt) = Ω(ν2) and ∆̃

(
dT , ( 1

N )
)

=
O(log N). For example, the sum of binary entropies
∆2 has both these properties:

inf
Ct

:=∆2(d,dt)︷ ︸︸ ︷∑
n

(
dn ln

dn

dt
n

+ (1− dn) ln
1− dn

1− dt
n

)
≥ inf

Ct

∆(d,dt) + inf
d:

P
n dn=1

∆(1− d,1− dt)︸ ︷︷ ︸
0

(4)

≥ ν2

2
,

where the first inequality follows from splitting the
inf and dropping one of the constraints from the con-
straint set Ct and 1 denotes the all one vector. Further-
more, ∆2

(
dT−1, ( 1

N )
)
≤ (lnN)+1 and this leads to an

iteration bound of 2((ln N)+1)
ν2 . The corrective version

based on this divergence has been called LogitBoost
(Friedman et al., 2000; Duffy & Helmbold, 2000). The
above reasoning immediately provides O( log N

ν2 ) itera-
tion bounds for the totally corrective versions of Log-
itBoost that maximize the margin. Even though the
theoretical bounds for the LogitBoost variants are es-
sentially the same as the bounds for the standard rel-
ative entropy algorithms discussed in this paper, the
LogitBoost variants are marginally inferior in practice
(not shown).

Both the corrective and totally corrective algorithms
for maximizing the margin start rather slowly and
heuristics are needed for decreasing the edge bound γ̂t
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Figure 3: LPBoost with different opti-
mizers: shown is the margin vs. the no.
of selected hypotheses. Different opti-
mizers lead to the selection of different
hypotheses with varying maximum mar-
gins. Adding a regularizer (see text) sig-
nificantly improves the simplex solution
in some cases.

Figure 4: LPBoost vs. TotalBoostν on two 100,000 dimensional datasets. Shown
is the margins vs. the number of iterations: [left] data with 100 duplicated blocks
(with clipped Gaussian noise) and [right] data with independent features. For
TotalBoostν , we depict the realized (green) and the LP-optimized (blue) margin.
When there are lots of duplicated features, then LPBoost stalls after an initial
fast phase, while it performs well in other cases. We did not observe this behavior
for TotalBoostν or AdaBoost∗ν (not shown). The difference becomes larger when
the block size is increased.

so that this slow start is avoided. For practical noisy
applications, boosting algorithms are needed that al-
low for a bias term and for soft margins. LPBoost has
already been used this way in Bennett et al. (2000)
but no iteration bounds are known for any version of
LPBoost. We show in the full paper that our method-
ology still leads to iteration bounds for boosting algo-
rithms with entropic regularization when a bias term
is added. Iteration bounds for soft margin versions are
left as future research.
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