
ECE 6560 – Partial Differiential
Equations for image processing and

computer vision

Final Project Report

28 avril 2008

Cyril Roussillon

Professor:

Anthony Yezzi

Georgia Institute of Technlology

Computer Science

Spring 08



1 Problem statement

A fundamental problem in computer vision is recognition of objects. A lot of machine learning
techniques needs first a reduction of the complexity of the scene. Contour of an object is one
of its most significative characteristics. Some interesting classification techniques even need an
exact closed contour of the object (such as Fourier descriptors, curvogram analysis, ...), contrary
to other techniques (such as Hough transform, some neural networks, ...).

Thus our goal is, given an image representing an object and its approximate position, to find its
contour.

2 Mathematical formulation

Active contours (a.k.a. snakes) are an interesting solution to find closed contours of objects.
Since their introduction, many variants have been developped, in particular edge-based active
contours, region-based active contours, and Gradient Vector Flow active contours (though they
do not derive from an energy functional).

There are a lot of applications where the contour is characterized by a strong gradient. Edge-
based active contours uses this fact, and this is the one I implemented.

2.1 Energy functional

So our goal is to maximize the gradient on the curve, or more precisely the average of the gradient
on the curve. Moreover contours of artificial objects are smooth, so we want a smooth curve.
One way to have a smooth curve is to minimize its length, what can be done by maximizing the
integral of the gradient on the curve instead of the average.

Let the following notations :

– c(p) =
(

x(p)
y(p)

)
the curve parameterized by p ∈ [0, 1].

– I(x, y) the greyscale image
Now let’s consider the following function, called the conformal factor :

φ(c(p)) =
1

1 + ‖∇I(x(p), y(p))‖2

Clearly if the gradient is small, then φ ≈ 1, and if the gradient is large then φ ≈ 0.

Thus we want to minimize the following energy :

E(C) =
∫

C
φ·ds

This energy is geometric, because it does not depend on the parameterization of the curve C,
only the arclength.

2.2 Resolution

Suppose the curve evolves with time, then in order to minimize E, we have to descent its gradient.

1/8



dE

dt
=

d
dt

∫
C

φ·ds

=
d
dt

∫
C

φ (c(p, t)) · ‖cp‖ ·dp︸ ︷︷ ︸
ds

=
∫ 1

0

[
ct·∇φ· ‖cp‖+ φ· ‖cp‖t

]
·dp

By the way : ‖cp‖t =
d
dt

√
cp·cp =

cpt·cp + cp·cpt

2√cp·cp
=

cpt·cp

‖cp‖

And by integration by parts :∫ 1

0
φ·

cpt·cp

‖cp‖
dp =

∫ 1

0

(
φ·cp

‖cp‖

)
·cpt·dp =

[
φ·cp·ct

‖cp‖

]1

p=0︸ ︷︷ ︸
0 because c is 1-periodic

−
∫ 1

0

(
φ·cp

‖cp‖

)
p

·ct·dp

=
∫ 1

0

[
ct·∇φ· ‖cp‖ − ct·

(
φ·cp

‖cp‖

)
p

]
dp

=
∫

ct·

∇φ· ‖cp‖ −
‖cp‖
ds︸ ︷︷ ︸
d
dp

φ·

cp

‖cp‖︸ ︷︷ ︸
cs


 ·

ds

‖cp‖︸ ︷︷ ︸
dp

(because ds = ‖cp‖dp)

=
∫

ct· (∇φ− (φ·cs)s) ds

=
∫

ct·

∇φ− φs· cs︸︷︷︸
T

−φ·css

 ds

=
∫

ct·

∇φ− (∇φ·T )·T︸ ︷︷ ︸
(∇φ·N)·N

−φ css︸︷︷︸
κ·N

 ds

= 〈ct, (∇φ·N − φ·κ) ·N〉

So the steepest descent is for :
ct = (φ·κ−∇φ·N) ·N

I actually added an erosion/dilation term α :

ct = (φ·(κ + α)−∇φ·N) ·N

This allows to initialize the snake quite far away from the actual contour, inside or outside the
contour.

Interpretation
– φ·κ is the rigidity constraint. If the curvature κ is too big, it will be reduced. This rigidity

constrained is stronger when there is little gradient (φ large).
– α is the propagation term. If α > 0 we have dilation (the curve naturally tends to grow), and

if α < 0 we have erosion (the curve naturally tends to shrink). The actual term is φ·α because
we want to reduce this natural propagation when the gradient is large (φ small). Note that
the rigidity term φ·κ already tend to erode the curve.

2/8



– ∇φ·N is the term that will tend to make the curve converging where φ is the smaller (the
gradient is the larger). Actually its main effect will be to stop the curve when it is on a local
extrema sufficiently large (when the curve is on a maximum gradient line, if it tries to go away
this term will make it come back).

3 Implementation

3.1 Numerical implementation

I used marker particles to implement the gradient descent. So the curve is discretized into N
points ci(pi, t), and we want to compute :

ct = (φ·κ−∇φ·N) ·N

with a temporal timestep ∆t.

I used :
– upwind temporal differences, because we want to compute the contour at the next timestep

according to the current contour,
– central spatial differences for the curve position (particles position), because we want to find

the normal to the curve so we have to be centered around the point,
– central spatial differences for the image gradient, in order to be more stable (broader and

more centered local view).
The computations are done in the image in pixels, width ∆x = ∆y = 1. The time step ∆t is
chosen so that the evolution of the curve is stable and fast enough.

The variables in capital upright characters I introduce (DX, DY, DDX, DDY, NORM, ...) are
the temporary scalar variables I used in the code in order to keep it readable, and I reproduce
them here for the same reason.

On the left hand size :

ct =
∂c

∂t
=

c(p, t + ∆t)− c(p, t)
∆t

=
ci(t + ∆t)− ci(t)

∆t

So the evolution with time of the curve is :

ci(t + ∆t) = ci(t) + (φ·κ−∇φ·N) ·N ·∆t

Let’s discretize this equation :

cp =
c(p + ∆p, t)− c(p−∆p, t)

2∆p
=

ci+1(t)− ci−1(t)
2

=

 DX

DY


cpp =

c(t, p + ∆p)− 2c(t, p) + c(t, p−∆p)
(∆p)2

= (ci+1(t)− 2ci(t) + ci−1(t))

=

 DDX

DDY



3/8



‖cp‖ =
√

DX2 + DY2

= NORM

N = J ·T = J ·

cp

‖cp‖
=

1
NORM

·

 0 1

−1 0

 ·

 DX

DY

 =
1

NORM
·

 DY

−DX


=

 XN

YN


κ =

cpp·N

‖cp‖2 =
1

NORM2

 DDX

DDY

 ·

 XN

YN

 =
1

NORM2 · (DDX·XN + DDY·YN)

= KAPPA

‖∇I(x, y)‖2 =

∥∥∥∥∥∥∥
 I(x+1,y)−I(x-1,y)

2

I(x,y+1)−I(x,y-1)
2


∥∥∥∥∥∥∥

2

=
(

I(x+1, y)− I(x-1, y)
2

)2

+
(

I(x, y+1)− I(x, y-1)
2

)2

φ(x, y) =
1

1 + 1
A · ‖∇I‖2

(A=2000, chosen so that φ looks good
(reasonable slope) with I(x, y) ∈ {0...255})

= PHI

∇φ(x, y) =

 φ(x+1,y)−φ(x−1,y)
2

φ(x,y+1)−φ(x,y−1)
2


=

 DPHIX

DPHIY


∇φ·N = DPHIX·YN−DPHIY·XN

= DPHIN

So finally :

ci(t + ∆t) = ci(t) + ∆t· (PHI· (KAPPA + ALPHA)−DPHIN) ·

 XN

YN


3.2 Other implementation considerations

The minimal and maximal distance between particles are defined. Shen two successive particles
are closer than the minimal distance, they are merged into one particle in between with linear
interpolation, and when two successive particles are farther than the maximal distance, another
particle is added in between with linear interpolation. Usually I used 5 and 15 pixels for minimal
and maximal distances.

4/8



The particles are prevented from going closer than 2 pixels from the image sides, in order to
avoid to deal with the image boundaries (this is a simplification because it is not important for
the active contour).

The contour is initialized as a circle. The user gives its center, radius, and the direction of
propagation (whether it is initialized inside or outside the object).

The algorithm was implemented in C++ with OpenCV. The source code is available here :
http://crteknologies.free.fr/publish/pde_snakes-edge-mp.zip.

4 Experimental results

4.1 The coins

I first tested the algorithm with a simple image representing coins on a white background, and
initializing the contour outside (figure 1).

Fig. 1 – Test on a simple object with white background (initial and final states)

The time evolution for figure 1 can be seen on the video available here : http://crteknologies.
free.fr/publish/pde_coins.avi.

Actually the erosion term is not needed, because the regularity term φ·κ already makes the curve
shrink if not stopped by ∇φ·N .

However when starting from inside, as there are a lot of details in the coin, the snake is stuck
inside with local gradient maxima.

4.2 The pillow

Then I tested with another image from inside the object (figure 2). The pillow is quite uniform
inside, but nonetheless has creases on the sides with non negligeable gradient and local gradient
maxima, that sometimes slows down the progression because of the stopping term.

Moreover we can notice that the rigidity constraint φ·κ prevents it from fitting to the corners.

The time evolution for figure 2 can be seen on the video available here : http://crteknologies.
free.fr/publish/pde_pillow.avi.

4.3 The dolphin

Eventually I tested with a more difficult image. The snake didn’t converge because it was stuck
to details of high gradient (figure 3).

5/8

http://crteknologies.free.fr/publish/pde_snakes-edge-mp.zip
http://crteknologies.free.fr/publish/pde_coins.avi
http://crteknologies.free.fr/publish/pde_coins.avi
http://crteknologies.free.fr/publish/pde_pillow.avi
http://crteknologies.free.fr/publish/pde_pillow.avi


Fig. 2 – Test in a more difficult case (initial and final states

Fig. 3 – Test in a difficult case (initial and final states)

6/8



The time evolution for figure 3 can be seen on the video available here : http://crteknologies.
free.fr/publish/pde_dolphin1.avi.

However I did several modifications in order to behave better.

First we can see that the active contour is stucked to details of small size, so I smoothed the
image with an edge-preserving method (Selective Gaussian function of The Gimp).

Second, we can see that the active contour captures the horizon. This seems normal, but as it
is normal to the active contour we can think that it should not be sensitive to this gradient.
So I used the scalar product between the gradient of the image and the normal of the contour
instead of only the gradient.

Finally, in order to be still less bothered by spurious gradient, I added unconditional terms of
regularity and erosion (by unconditional I mean not multiplied by φ).

Then it was able to reasonably find the dolphin (figure 4), even if rigidity constraints still
prevented it from going in convex parts.

Fig. 4 – Test in a difficult case with modifications (initial and final states)

The time evolution for figure 4 can be seen on the video available here : http://crteknologies.
free.fr/publish/pde_dolphin2.avi.

5 Discussion

The main problem I see with this energy functional is that it is pretty sensitive to the strength
of the gradient it will stop at. If the object contour has little contrast, the parameters have to
be manually tuned to increase the stopping term compared to the propagation (erosion/dila-
tion) term. The φ function has an important role in this sensitivity because it determines with
which strenght the snake will react to some gradient change. So tuning this function could be
interesting.

The active contour sometimes get stuck with some small parasite gradient areas. It could be
interesting to smooth a little bit the image before computing the gradient. This could be done
with a Gaussian filter of small radius (or in an equivalent way using a Sobel mask to compute the
gradient), or even better using a filter that preserves edges (median-filter, anisotropic filtering).

I could also have added a tangential force in order to keep the particles at the same distance
from one to another. However as I add and remove particles when they become too far away or
too close, it was fine without it.

7/8

http://crteknologies.free.fr/publish/pde_dolphin1.avi
http://crteknologies.free.fr/publish/pde_dolphin1.avi
http://crteknologies.free.fr/publish/pde_dolphin2.avi
http://crteknologies.free.fr/publish/pde_dolphin2.avi


Some objects contours are not very well defined by a strong gradient. In those cases region-based
active contours can be used. It could be interesting to combine edge and region information too.

Moreover implementation with marker particles is not perfect. It is sensitive to initialization,
and does not deal with topological changes. Level-set methods are known to be more robust.

To conclude, this implementation of edge-based active contour with marker particles was an
interesting first implementation of active contours for me. It has provided me thorough practical
understanding that will help me if I have to implement or use other types of active contours or
other implementation methods that we have seen the theory in class, or that one can find in the
scientific literature.

8/8


	Problem statement
	Mathematical formulation
	Energy functional
	Resolution

	Implementation
	Numerical implementation
	Other implementation considerations

	Experimental results
	The coins
	The pillow
	The dolphin

	Discussion

